

AD A 054585

AD NO.

MOVING AVERAGE MODELS--TIME SERIES IN M-DIMENSIONS

AES-7802

ADMINISTRATIVE AND ENGINEERING SYSTEMS MONOGRAPH

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

ERRATA SHEET

MOVING AVERAGE MODELS--TIME SERIES IN M-DIMENSIONS

Page 1, Abstract, line 2, insert (see Box & Jenkins, 1976) after "well known."

Page 2, line 4, $E(z_{x,t})$ should be $E[z_{x,t}]$.

Page 2, Eq. (1.2), brackets are missing in $E[a_{x,t}a_{x+n,t-k}]$

Page 3. The following should appear as a caption below the figure:

$$\tilde{z}_{x_1,x_2,t} = \sum_{n_2=-1}^{1} \sum_{n_1=-2}^{2} \sum_{k=1}^{r} \psi_{n_1,n_2,k}^{a_{x_1+n_1,x_2+n_2,t-k}+a_{x_1,x_2,t}}$$

spatial order four in direction x_1 , order two in x_2 .

"Whether or..." should begin a new paragraph.

Page 3, line 2 from bottom of page "at" should read "as."

Page 4, line 1, a comma should precede $F_{\mathbf{x}_{\mathbf{m}}}^{\mathbf{m}}$ and a comma should follow $\mathbf{x}_{\mathbf{n}}^{\mathbf{m}}$

Page 4, line 14, should read $X S_{i}$, i=-m

Page 9, insert following Eq. (2.1.9) "Further since $\rho_{01}\rho_{11} = (\rho_{10}\sigma_a^2)/\sigma_z^2$,

then we find $\theta_1 = (\theta_2 \rho_{01})/\rho_{11}$ and in terms of ρ_{01} and ρ_{11} only,

$$\theta_{2} = \frac{-\rho_{11}^{\pm}\rho_{11}\sqrt{1-4(\rho_{01}^{2}+\rho_{11}^{2})}}{2(\rho_{01}^{2}+\rho_{11}^{2})}$$
(2.1.10)

The advantage of (2.1.9) over (2.1.10) is that θ_1 and θ_2 are unambiguously determined by ρ_{10} , ρ_{11} , and ρ_{01} ." Also change <u>original</u> (2.1.10) to (2.1.11).

Page 10, following (2.2.3) insert "Note $\rho_{-11} = \rho_{11}$, because of the symmetry of the autocorrelation function in m dimensions."

Page 11, line 15, add after "implies" " $|\theta_1|$ <1, again in agreement. Finally, with θ_2 = θ_3 =0 we obtain the MA(2;0,0) MA(2) process of Box and Jenkins, and (2.2.5) implies..."

Page 11, line 5 from bottom, add "In (2.2.3) $\rho_{11} = \rho_{-11}$ due to the symmetry of the autocorrelation function in m dimensions."

(over)

Page 14, following (2.4.3), add "Note $\rho_{11}^{=\rho}$ -11."

Page 16, following (3.1.2), add "Note $\gamma_{110}^{=\gamma_{1-10}}$."

Page 16, following (3.1.3), add "Note $\rho_{110}^{=\rho}_{1-10}$."

Page 18, line 12, after "zero" insert "Note $\gamma_{101} = \gamma_{-101}$, $\gamma_{011} = \gamma_{0-11}$

and $\gamma_{110} = \gamma_{1-10}$."

Page 20, line 13, following "autocorrelations" add "Note that

 $\gamma_{101} = \gamma_{-101}$, $\gamma_{011} = \gamma_{0-11}$, $\gamma_{110} = \gamma_{1-10}$, $\gamma_{111} = \gamma_{-111}$, $\gamma_{1-11} = \gamma_{-1-11}$."

Page 21, line 17, should read "eralize to m dimensions under proper restrictions."

Page 22, add the following reference:

Taneja, V., & Aroian, L.A. (1977). Time series in m dimensions, autoregressive models.

MOVING AVERAGE MODELS--TIME SERIES IN M-DIMENSIONS

D.A. Voss, C.A. Oprian
Department of Mathematics
Western Illinois University

L.A. Aroian
Institute of Administration & Management
Union College and University

DISTRIBUTION STATEMENT A

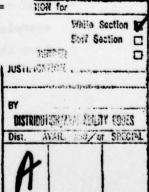
Approved for public releases
Distribution Unlimited

MOVING AVERAGE MODELS--TIME SERIES IN M-DIMENSIONS

D.A. Voss and C.A. Oprian

Department of Mathematics
Western Illinois University, Macomb, Illinois

L.A. Aroian


Institute of Administration and Management Union College and University, Schenectady, New York

ABSTRACT

Stochastic models for discrete time series in the time domain are well known but such models lack consideration of spatial dependency. We expand on their work by constructing spatially dependent moving average models. Definitions of order, stationarity, invertibility, autocorrelation function, and spectrum are made as natural extensions of those in zero dimensions and are implemented in the one and two-space dimensional models.

1. INTRODUCTION

We describe a general linear stochastic model which supposes a time series to be generated by a linear aggregation of random shocks at various temporal and spatial locations. Letting $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m)$, an m-dimensional vector, the general Moving Average (MA) model of m-dimensional time series is defined by

$$\tilde{z}_{x,t} = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} \psi_{n,k} a_{x+n,t-k} + a_{x,t},$$
 (1.1)

where $n=(n_1,n_2,\ldots,n_m)$, $\sum\limits_{n=-\infty}^{\infty}$ denotes the repetitive sum over each component of n (i.e., $\sum\limits_{n=-\infty}^{\infty}=\sum\limits_{n_m=-\infty}^{\infty}\ldots\sum\limits_{n_2=-\infty}^{\infty}\sum\limits_{n_1=-\infty}^{\infty}$), and $z_{x,t}=z_{x,t}-z_{x,t}=z_{x,t}$ is the deviation from the mean. The white noise process $a_{x,t}=a_{x,$

$$\gamma_{n,k} = E a_{x,t} a_{x+n,t-k} = \begin{cases} \sigma_a^2, & n=0 \text{ and } k=0 \\ 0, & \text{otherwise} \end{cases}$$
 (1.2)

and hence the autocorrelation function of white noise has the particularly simple form

$$\rho_{n,k} = \begin{cases} 1, & n=0 \text{ and } k=0 \\ 0, & \text{otherwise} \end{cases}$$
 (1.3)

We also assume that $\tilde{z}_{x,t}$ is a weakly stationary process, i.e.,

$$E\left[\tilde{z}_{x,t}^{2}\right] < \infty \text{ and } E\left[\tilde{z}_{x,t_{1}}\tilde{z}_{y,t_{2}}\right] = \sigma_{z}^{2\rho}|x-y|,|t_{1}-t_{2}|$$
 (1.4)

In this paper we explicitly focus our attention on the special case of (1.1) in which only a finite number of the coefficients are nonzero, that is:

$$\widetilde{z}_{x,t} = \sum_{n=-p}^{q} \sum_{k=1}^{r} \psi_{n,k} a_{x+n,t-k} + a_{x,t}$$
 (1.5)

If in equation (1.5) all of the coefficients, $\psi_{n,k}$, are nonzero, the process is called moving average of temporal order r and spatial order $p_j + q_j$ in each space direction x_j , $1 \le j \le m$. For example, letting m = 2, p = (2,1), q = (2,1), and r arbitrary, we have the following representative scheme:

$$\tilde{z}_{x_1, x_2, t} = \sum_{n_2=-1}^{1} \sum_{n_1=-2}^{2} \sum_{k=1}^{r} \psi_{n_1, n_2, k} a_{x_1+n_1, x_2+n_2, t-k} a_{x_1, x_2, t}$$

spatial order four in direction \mathbf{x}_1 , order two in \mathbf{x}_2 . Whether or not all the coefficients are nonzero, it is easier, from the analysis viewpoint, to represent the process (1.5) in terms of shift operators. The backward shift operator in time, \mathbf{B}_{t} , is defined by

$$B_{t}\tilde{z}_{x,t} = \tilde{z}_{x,t-1}$$

while the backward and forward shift operators in spatial direction x_i , denoted by B_{x_i} and F_{x_i} respectively, are defined by

$$B_{x_{i}}\tilde{z}_{x,t} = \tilde{z}_{x-\delta_{i},t}$$

$$F_{x_{i}}\tilde{z}_{x,t} = \tilde{z}_{x+\delta_{i},t}'$$
(1

where $\delta_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{im})$ and $\delta_{ij} = \begin{cases} 1, i=j \\ 0, i \neq j. \end{cases}$

Powers of these operators are defined in the usual manner, for example,

$$B_{x_i}^2 \tilde{z}_{x,t} = B_{x_i} (B_{x_i} \tilde{z}_{x,t}) = \tilde{z}_{x-2\delta_i,t}$$

In addition, we note that the operator B is the inverse of F_{x_i} , that is, $F_{x_i}^{-1} = F_{x_i}$. In terms of these shift operators, the process (1.5) can be reformulated at

$$\tilde{z}_{x,t} = (1 + \sum_{n=-p}^{q} \sum_{k=1}^{r} \psi_{n,k} F_{x}^{n} B_{t}^{k}) a_{x,t}$$
 (1.6)

where
$$F_{\mathbf{x}}^{n} = (F_{\mathbf{x}_{1}}^{n}, F_{\mathbf{x}_{2}}^{n}, \dots F_{\mathbf{x}_{m}}^{n}) = (B_{\mathbf{x}_{1}}^{-n} B_{\mathbf{x}_{2}}^{n}, \dots B_{\mathbf{x}_{m}}^{-n})$$

and $F_{\mathbf{x}}^{n} B_{\mathbf{t}}^{k} = B_{\mathbf{x}_{1}}^{-n} B_{\mathbf{x}_{2}}^{n} \dots B_{\mathbf{x}_{m}}^{n} B_{\mathbf{t}}^{k}$.

Defining

$$\Psi(\mathbf{B_x,B_t}) = 1 + \sum_{n=-p}^{q} \sum_{k=1}^{r} \psi_{n,k} \mathbf{F}_{x}^{n} \mathbf{B}_{t}^{k}$$
 (1.7)

the moving average process

$$\hat{z}_{x,t} = \Psi(B_x, B_t) a_{x,t}$$
 (1.8)

can be thought of as the output $\tilde{z}_{x,t}$ from a linear filter with transfer function $\Psi(B_x,B_t)$ when the input is white noise $a_{x,t}$. Since the expression for $\Psi(B_x,B_t)$ is finite, no restrictions are needed on the parameters $\psi_{n,k}$ to ensure stationarity. The invertibility condition for the moving average process may be obtained by writing (1.8) as

$$a_{x,t} = \Psi^{-1}(B_x, B_t)\widetilde{z}_{x,t}.$$

Extending the results of Box and Jenkins it can be shown that, for invertibility, $\Pi(B_x,B_t)=\Psi^{-1}(B_x,B_t)$ must converge on X S , where

$$S_{0} = \{B_{t} : |B_{t}| \le 1\}$$

$$S_{-i} = \{B_{x_{i}} : |B_{x_{i}}| \le 1\}$$

$$S_{i} = \{F_{x_{i}} : |F_{x_{i}}| \le 1\} . \qquad (1 \le i \le m)$$

The autocovariance function of a MA process may be obtained by multiplying through (1.6) by $\tilde{z}_{x-\ell,t-k}$, where $\ell=(\ell_1,\ell_2,\ldots,\ell_m)$ and taking expectations. A more convenient way of obtaining the autocovariances is often via the autocovariance generating function

$$\gamma(B_{\mathbf{x}}, B_{\mathbf{t}}) = \sum_{k=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \gamma_{k} B_{\mathbf{x}}^{k} B_{\mathbf{t}}^{k}, \qquad (1.9)$$

in which it is noted that γ_{00} , the variance of the process, is the coefficient of $B_{\mathbf{x}}^{0}B_{\mathbf{t}}^{0}\equiv 1$, while $\gamma_{\ell,\mathbf{k}}$ is the coefficient of both

 $B_{\mathbf{x}}^{\mathbf{k}} B_{\mathbf{t}}^{\mathbf{k}}$ and of $B_{\mathbf{x}}^{-\mathbf{k}} B_{\mathbf{t}}^{-\mathbf{k}}$; as in Box and Jenkins, it follows that

$$\gamma(B_{x}, B_{t}) = \sigma_{a}^{2} \Psi(B_{x}, B_{t}) \Psi(F_{x}, F_{t}).$$
 (1.10)

The autocorrelation function in m dimensions is symmetrical in each variable.

It can be shown that if we substitute $B_t = e^{-i2\pi f}$ and $B_x = e^{-i2\pi g}j$, where $i = \sqrt{-1}$ and $1 \le j \le m$, in the autocovariance generating function (1.10), we obtain the power spectrum. Thus the spectrum of the MA process is

$$p(g,f) = 2\sigma_{a}^{2} \Psi(e^{-i2\pi g}, e^{-i2\pi f}) \Psi(e^{i2\pi g}, e^{i2\pi f})$$

$$= 2\sigma_{a}^{2} |\Psi(e^{-i2\pi g}, e^{-i2\pi f})|^{2},$$
(1.11)

where $0 < f \le \frac{1}{2}$, $0 \le g_j \le \frac{1}{2}$ ($1 \le j \le m$), and $\Psi(e^{-i2\pi g}, e^{-i2\pi f}) = \Psi(e^{-i2\pi g}, e^{-i2\pi g}, e^{-i2\pi g}, e^{-i2\pi f})$.

In sections two and three we analyze one-dimensional and two-dimensional models, respectively. In both sections we have focused on models whose spatial and temporal orders do not exceed two. Section four contains some general remarks and indicates areas where more extensive research is needed. The following theorem generalizes a corresponding result for MA in zero dimensions.

Theorem: If the conditions for invertibility are satisfied, then every finite MA process in m dimensions may be expressed as an infinite AR model in m dimensions.

2. ONE-DIMENSIONAL TIME SERIES

In this section we consider moving average models of one-dimensional time series with temporal and spatial orders not exceeding two. For envenience and easy reference we let $x=x_1$, and denote by $MA(r;p_1,q_1)$ the moving average model for one-dimensional time series of temporal order r and spatial order p_1+q_1 ; recall that p_1 and q_1 denote the maximum powers of the

operators B_{X} and F_{X} occurring in (1.6), respectively. This notation is an attempt to be consistent with that in Box and Jenkins, who analyzed zero-dimensional time series with moving average models of various temporal orders, that is, MA(r)~MA(r;0,0); this equivalence means that since the maximum powers of the spatial operators are both zero, and $B_{X}^{0} = F_{X}^{0} = 1$ (identity operator), we are virtually looking at the same point at different times. Formally, from (1.6) we find that

$$\tilde{z}_{x,t} = (1 + \sum_{n_1 = -p_1}^{q_1} \sum_{k=1}^{r} \psi_{n_1,k}^{n_1} F_x^{k} B_t^k) a_{x,t}.$$
 (2.1)

Thus with $p_1=q_1=0$, we obtain

$$\tilde{z}_{x,t} = a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{02} a_{x,t-2} + \dots + \psi_{0r} a_{x,t-r}$$
 (2.2)

Deleting the first subscript in each case, as $\mathbf{z}_{\mathbf{x},\mathbf{t}}$ depends only on t, results in the zero-dimensional moving average model in Box and Jenkins, namely:

$$\dot{z}_t = a_t + \psi_1 a_{t-1} + a_{t-2} + \dots + \psi_r a_{t-r}$$
 (2.3)

There are five general "spatial" models described by (2.1) where $1 \le p_1 + q_1 \le 2$; we represent these diagramatically below, where order refers to the spatial order:

MA(r;1,0): First order backward	x-1	×	
MA(r;0,1): First order forward	×	x+1	
MA(r;1,1): Second order forward-backward	x-1	x	<u>x+1</u>
MA(r;2,0): Second order backward		x- 1	
MA(r;0,2): Second order forward	×	x+1	x +2

As indicated previously, we will restrict our attention to the cases r=1,2; this results in a set of ten models of which we will analyze a subset.

2.1 The model MA(1;1,0). From equation (2.1) we obtain

$$\widetilde{z}_{x,t} = (1 + \sum_{n_1 = -1}^{0} \sum_{k=1}^{1} \psi_{n_1,k} F_{x}^{n_1} B_{t}^{k}) a_{x,t}$$

$$= a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{-11} a_{x-1,t-1}.$$
(2.1.1)

For convenience, and to indicate that we are using a finite set of weight parameters, we change symbols, letting $\psi_{01} = -\theta_1$ and $\psi_{-11} = -\theta_2$. Then (2.1.1) becomes

$$\tilde{z}_{x,t} = (1 - \theta_1 B_t - \theta_2 B_x B_t) a_{x,t} = \Theta(B_x, B_t) a_{x,t}.$$
 (2.1.2)

Multiplying through (2.1.2) by $\tilde{z}_{x-\ell,t-k}$ we get

$$\tilde{z}_{x-\ell,t-k}\tilde{z}_{x,t}=\hat{z}_{x-\ell,t-k}\tilde{a}_{x,t}-\hat{\theta}_{1}\tilde{z}_{x-\ell,t-k}\tilde{a}_{x,t-1}-\hat{\theta}_{2}\tilde{z}_{x-\ell,t-k}\tilde{a}_{x-1,t-1}$$
(2.1.3)

On taking expected values in (2.1.3) we find the variance of the process is

$$\gamma_{00} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2) \sigma_a^2$$
 (2.1.4)

and

$$\gamma_{01} = -\theta_1 \sigma_a^2$$
, $\gamma_{10} = \theta_1 \theta_2 \sigma_a^2$, $\gamma_{11} = -\theta_2 \sigma_a^2$,

while all other autocovariances are zero. Thus the autocorrelation function is

$$\rho_{01} = \frac{-\theta_1}{1 + \theta_1^2 + \theta_2^2}, \quad \rho_{10} = \frac{\theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}, \quad \rho_{11} = \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2}, \quad (2.1.5)$$

all other being zero.

To illustrate the technique of obtaining the autocovariances using the autocovariance generating function (1.9),

$$\Psi(B_{\mathbf{x}}B_{\mathbf{t}}) = \Theta(B_{\mathbf{x}}, B_{\mathbf{t}}) = 1 - \theta_1 B_{\mathbf{t}} - \theta_2 B_{\mathbf{x}}B_{\mathbf{t}}$$
 (2.1.6)

is substituted into (1.10) yielding

$$\gamma(B_{\mathbf{x}}, B_{\mathbf{t}}) = \sigma_{\mathbf{a}}^{2} (1 - \theta_{1}B_{\mathbf{t}} - \theta_{2}B_{\mathbf{x}}B_{\mathbf{t}}) (1 - \theta_{1}B_{\mathbf{t}}^{-1} - \theta_{2}B_{\mathbf{x}}^{-1}B_{\mathbf{t}}^{-1})$$

$$= \sigma_{\mathbf{a}}^{2} [-\theta_{2}B_{\mathbf{x}}^{-1}B_{\mathbf{t}}^{-1} + \theta_{1}\theta_{2}B_{\mathbf{x}}^{-1} - \theta_{1}B_{\mathbf{t}}^{-1} + (1 + \theta_{1}^{2} + \theta_{2}^{2})$$

$$-\theta_{1}B_{\mathbf{t}} + \theta_{1}\theta_{2}B_{\mathbf{x}} - \theta_{2}B_{\mathbf{x}}B_{\mathbf{t}}].$$
(2.1.7)

Comparing (2.1.7) with (1.9) and noting that $\gamma_{-1-1} = \gamma_{11}$, $\gamma_{-10} = \gamma_{10}$, and $\gamma_{0-1} = \gamma_{01}$, we obtain the same results as listed in (2.1.4).

Substituting $B_x = e^{-i2\pi g}$ and $B_t = e^{-i2\pi f}$ into the autocovariance generating function (1.9), with $\Psi(B_x, B_t)$ as in (2.1.6), we obtain one half of the power spectrum. Thus the spectrum is

$$\begin{aligned} p(g,f) &= 2\sigma_{a}^{2} \left| \Psi(e^{-i2\pi g}, e^{-i2\pi f}) \right|^{2} \\ &= 2\sigma_{a}^{2} \left| 1 - \theta_{1} e^{-i2\pi f} - \theta_{2} e^{-i2\pi g} e^{-i2\pi f} \right|^{2} \\ &= 2\sigma_{a}^{2} \left[1 + \theta_{1}^{2} + \theta_{2}^{2} + 2\theta_{1} \theta_{2} \cos 2\pi g \right. \\ &\left. - 2 \left\{ \theta_{1} \cos 2\pi f + \theta_{2} \cos 2\pi (f + g) \right\} \right] \\ &\left. 0 \le f \le \frac{1}{2}; \ 0 \le g \le \frac{1}{2} \end{aligned}$$

For invertibility, the generating function $\Pi(B_x, B_t) = \theta^{-1}(B_x, B_t)$ must converge for $|B_t| \le 1$ and $|B_x| \le 1$. Since

$$\Pi(B_{\mathbf{x}}, B_{\mathbf{t}}) = [1 - (\theta_1 + \theta_2 B_{\mathbf{x}}) B_{\mathbf{t}}]^{-1} = \sum_{j=0}^{\infty} (\theta_1 + \theta_2 B_{\mathbf{x}})^j B_{\mathbf{t}}^j,$$

we see that for invertibility,

$$|\theta_1 + \theta_2 B_x| < 1$$
 and $|B_x| \le 1$.

Consequently, the parameters of the MA(1;1,0) process must satisfy $|\theta_1|+|\theta_2|<1$ to ensure invertibility. If the autocorrelations are known we can solve for the parameters θ_1 and θ_2 from equation (2.1.5) even though they are nonlinear; for other models we may

need to use an iterative process. In the present case,

$$\theta_1 = \frac{-\rho_{10}}{\rho_{11}}, \ \theta_2 = \frac{-\rho_{10}}{\rho_{01}}$$
 (2.1.9)

If any of the autocorrelations are zero, then from (2.1.5), θ_1 or θ_2 is zero, the model reduces to the zero dimensional case and we need to solve a quadratic equation for the nonzero parameters.

Finally, we wish to point out that the analysis of the forward model MA(1;0,1) given by

$$\widetilde{z}_{x,t} = (1 + \sum_{n_1=0}^{1} \sum_{k=1}^{1} \psi_{n_1,k} F_x^{n_1} B_t^k) a_{x,t}$$

$$= a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{11} a_{x+1,t-1}$$

$$= (1 - \theta_1 B_t - \theta_3 F_x B_t) a_{x,t}$$

$$\psi_{01} = -\theta_1; \psi_{11} = -\theta_3$$
(2.1.10)

is very similar to that of the MA(1;1,0) model. The results are analogous with the paramter θ_2 replaced by θ_3 and the operator B replaced by F.

2.2 The model MA(2;1,0). From (1.6) we obtain

$$\widetilde{z}_{x,t} = (1 + \sum_{n_1 = -1}^{0} \sum_{k=1}^{2} \psi_{n_1,k} F_{x}^{n_1} B_{t}^{k}) a_{x,t}$$

$$= a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{-11} a_{x-1,t-1} + \psi_{-12} a_{x-1,t-2} + \psi_{02} a_{x,t-2}$$

$$= (1 - \theta_1 B_t - \theta_2 B_x B_t - \theta_3 B_x B_t^2 - \theta_4 B_t^2) a_{x,t}$$

$$= 0 (B_x, B_t) a_{x,t}$$
(2.2.1)

where ψ_{01} =- θ_1 , ψ_{-11} =- θ_2 , ψ_{-12} =- θ_3 , and ψ_{02} =- θ_4 .

Substituting into the autocovariance generating function results in

$$\begin{split} \gamma(B_{\mathbf{x}},B_{\mathbf{t}}) = & \sigma_{\mathbf{a}}^{2} (1-\theta_{1}B_{\mathbf{t}}-\theta_{2}B_{\mathbf{x}}B_{\mathbf{t}}-\theta_{3}B_{\mathbf{x}}B_{\mathbf{t}}^{2}-\theta_{4}B_{\mathbf{t}}^{2}) \\ & (1-\theta_{1}B_{\mathbf{t}}^{-1}-\theta_{2}B_{\mathbf{x}}^{-1}-\theta_{3}B_{\mathbf{x}}^{-1}B_{\mathbf{t}}^{-2}-\theta_{4}B_{\mathbf{t}}^{-2}) \,. \end{split}$$

Multiplying out this expression and comparing the result with (1.9) we find the variance of the process is

$$\gamma_{00} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2 + \theta_3^2 + \theta_4^2) \sigma_a^2$$
 (2.2.2)

and

$$\begin{split} \gamma_{01} &= (-\theta_{1} + \theta_{2} \theta_{3} + \theta_{1} \theta_{4}) \sigma_{a}^{2}, \quad \gamma_{10} &= (\theta_{1} \theta_{2} + \theta_{3} \theta_{4}) \sigma_{a}^{2}, \\ \gamma_{11} &= (-\theta_{2} + \theta_{1} \theta_{3}) \sigma_{a}^{2}, \quad \gamma_{-11} &= \theta_{2} \theta_{4} \sigma_{a}^{2}, \\ \gamma_{02} &= -\theta_{4} \sigma_{a}^{2}, \quad \gamma_{12} &= -\theta_{3} \sigma_{a}^{2} \end{split}$$

while all other autocovariances are zero. Thus the autocorrelation function is

$$\begin{split} &\rho_{01} = \frac{-\theta_{1} + \theta_{2} \theta_{3} + \theta_{1} \theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{10} = \frac{\theta_{1} \theta_{2} + \theta_{3} \theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \\ &\rho_{11} = \frac{-\theta_{2} + \theta_{1} \theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{-11} = \frac{\theta_{2} \theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \\ &\rho_{02} = \frac{-\theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{12} = \frac{-\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}. \end{split}$$

From (1.11), the power spectrum for this model is given by

$$p(g,f) = 2\sigma_{a}^{2} \left| 1 - \theta_{1} e^{-i2\pi f} - \theta_{2} e^{-i2\pi g} e^{-i2\pi f} - \theta_{3} e^{-i2\pi g} e^{-i4\pi f} - \theta_{4} e^{-i4\pi f} \right|^{2}$$

$$0 < f < \frac{1}{2}; \quad 0 < g < \frac{1}{2}$$
(2.2.4)

For invertibility, $\Pi(B_x, B_t) = 0^{-1}(B_x, B_t)$ must converge for $|B_t| \le 1$ and $|B_x| \le 1$. Equivalently, the roots of

$$\Theta(B_{x}, B_{t}) = 1 - (\theta_{1} + \theta_{2}B_{x})B_{t} - (\theta_{4} + \theta_{3}B_{x})B_{t}^{2}$$

must be outside the region $|B_t| \le 1$ and $|B_x| \le 1$. Hence the parameters must satisfy:

$$\begin{aligned} \theta_{1} + \theta_{2} + \theta_{3} + \theta_{4} &\leq 1, & -\theta_{1} - \theta_{2} + \theta_{3} + \theta_{4} &\leq 1, \\ \theta_{1} - \theta_{2} - \theta_{3} + \theta_{4} &\leq 1, & -\theta_{1} + \theta_{2} - \theta_{3} + \theta_{4} &\leq 1, \\ & |\theta_{3}| + |\theta_{4}| &\leq 1. \end{aligned} \tag{2.2.5}$$

Note that as a consequence of these inequalities it follows that $|\theta_1|+|\theta_2|\leq 2$.

Setting $\theta_3 = \theta_4 = 0$, we obtain the model MA(1;1,0) discussed previously. From (2.2.5) with $\theta_3 = \theta_4 = 0$ we obtain $|\theta_1| + |\theta_2| < 1$, which agrees with the invertibility condition for the MA(1;1,0) model. In addition, note that with $\theta_2 = \theta_3 = \theta_4 = 0$ we obtain the MA(1;0,0) ~MA(1) process of Box and Jenkins, and (2.2.5) implies

$$\theta_1 + \theta_4 \le 1$$
, $\theta_4 - \theta_1 \le 1$, $|\theta_4| \le 1$,

which is also in agreement. If in (2.2.3) the autocorrelations are known, we get a nonlinear system of six equations to solve for the parameter θ_i , $1 \le i \le 4$. Certain dependencies exist among the autocorrelations as in the previous model, and the resultant system may be solved iteratively.

2.3 The model MA(1;2,0). From (1.6) we obtain

$$\widetilde{z}_{x,t} = (1 + \sum_{n_1 = -2}^{0} \sum_{k=1}^{1} \psi_{n_1,k} F_{x}^{n_1} B_{t}^{k}) a_{x,t}$$

$$= a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{-11} a_{x-1,t-1} + \psi_{-21} a_{x-2,t-1}$$

$$= a_{x,t} - \theta_{1} a_{x,t-1} - \theta_{2} a_{x-1,t-1} - \theta_{3} a_{x-2,t-1}$$

$$= (1 - \theta_1 B_t - \theta_2 B_x B_t - \theta_3 B_x^2 B_t) a_{x,t}$$

$$= 0 (B_x, B_t) a_{x,t}$$

where ψ_{01} =- θ_1 , ψ_{-11} =- θ_2 , and ψ_{-21} =- θ_3 . Substituting into the autocovariance generating function we find

$$\begin{split} \gamma(B_{\mathbf{x}},B_{\mathbf{t}}) = & \sigma_{\mathbf{a}}^{2} (1 - \theta_{1}B_{\mathbf{t}} - \theta_{2}B_{\mathbf{x}}B_{\mathbf{t}} - \theta_{3}B_{\mathbf{x}}^{2}B_{\mathbf{t}}) \\ & (1 - \theta_{1}B_{\mathbf{t}}^{-1} - \theta_{2}B_{\mathbf{x}}^{-1}B_{\mathbf{t}}^{-1} - \theta_{3}B_{\mathbf{x}}^{-2}B_{\mathbf{t}}^{-1}) \,. \end{split}$$

Multiplying out this expression and comparing the result with (1.9), we find the variance of the process is

$$\gamma_{00} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2 + \theta_3^2) \sigma_a^2$$
and
$$\gamma_{01} = -\theta_1^2 \sigma_a^2, \qquad \gamma_{11} = -\theta_2^2 \sigma_a^2$$

$$\gamma_{10} = (\theta_1^2 \theta_2 + \theta_2^2 \theta_3) \sigma_a^2, \quad \gamma_{21} = -\theta_3^2 \sigma_a^2$$

$$\gamma_{20} = \theta_1^2 \theta_3^2 \sigma_a^2,$$

$$\gamma_{20} = \theta_1^2 \theta_3^2 \sigma_a^2,$$
(2.3.2)

while all other autocovariances are zero. Thus the autocorrelations are given by

$$\rho_{01} = \frac{-\theta_{1}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{3}}, \quad \rho_{11} = \frac{-\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

$$\rho_{10} = \frac{\theta_{1}\theta_{2} + \theta_{2}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}}, \quad \rho_{21} = \frac{-\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

$$\rho_{20} = \frac{\theta_{1}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

$$\rho_{20} = \frac{\theta_{1}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

$$\rho_{20} = \frac{\theta_{1}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

From (1.11), the power spectrum for this model is given by $p(g,f) = 2\sigma_a^2 \left| 1 - \theta_1 e^{-i2\pi f} - \theta_2 e^{-i2\pi g} e^{-i2\pi f} - \theta_3 e^{-i4\pi g} e^{-i2\pi f} \right|^2 \qquad (2.3.4)$ $0 \le f \le \frac{1}{2}; \quad 0 \le g \le \frac{1}{2}.$

For invertibility, $\Pi(B_x, B_t) = 0^{-1} (B_x, B_t)$ must converge for $|B_t| \le 1$ and $|B_x| \le 1$. Since $\Theta(B_x, B_t) = 1 - (\theta_1 + \theta_2 B_x + \theta_3 B_x^2) B_t$, invertibility is ensured if $|\theta_1 + \theta_2 B_x + \theta_3 B_x^2| < 1$ and $|B_x| \le 1$. Thus the parameters must satisfy

 $\begin{aligned} &|\theta_1^{}+\theta_2^{}+\theta_3^{}|<1,\ |\theta_1^{}-\theta_2^{}+\theta_3^{}|<1, \end{aligned}$ and if $\frac{\theta_2^{}}{2\theta_3^{}}<1,\ \text{then}\ |\theta_1^{}-\frac{\theta_2^{}2}{4\theta_3^{}}|<1.$

2.4 The model MA(1;1,1). From 1.6 we obtain

$$\widetilde{z}_{x,t} = (1 + \sum_{n_1 = -1}^{1} \sum_{k=1}^{1} \psi_{n_1,k} F_x^{n_1} B_t^k) a_{x,t}$$

$$= a_{x,t} + \psi_{01} a_{x,t-1} + \psi_{-11} a_{x-1,t-1} + \psi_{11} a_{x+1,t-1}$$

$$= a_{x,t} - \theta_1 a_{x,t-1} - \theta_2 a_{x-1,t-1} - \theta_3 a_{x+1,t-1}$$

$$= (1 - \theta_1 B_t - \theta_2 B_x B_t - \theta_3 B_x^{-1} B_t) a_{x,t}$$

$$= \theta(B_x, B_t) a_{x,t},$$
(2.4.1)

where ψ_{01} =- θ_1 , ψ_{-11} =- θ_2 , and ψ_{11} =- θ_3 . Substituting into the autocovariance generating function

$$\gamma(B_{x},B_{t}) = \sigma_{a}^{2} (1 - \theta_{1}B_{t} - \theta_{2}B_{x}B_{t} - \theta_{3}B_{x}^{-1}B_{t}) (1 - \theta_{1}B_{t}^{-1} - \theta_{2}B_{x}^{-1}B_{t}^{-1} - \theta_{3}B_{x}B_{t}^{-1}),$$

and comparing with (1.9), we find the variance of the process is

$$\gamma_{00} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2 + \theta_3^2) \sigma_a^2$$

and

$$\gamma_{01} = -\frac{\theta_{1}}{1}\sigma_{a}^{2}, \qquad \gamma_{11} = -\frac{\theta_{2}}{2}\sigma_{a}^{2},
\gamma_{10} = (\frac{\theta_{1}}{1}\frac{\theta_{2}}{2} + \frac{\theta_{1}}{1}\frac{\theta_{3}}{3})\sigma_{a}^{2}, \quad \gamma_{-11} = -\frac{\theta_{3}}{3}\sigma_{a}^{2},
\gamma_{20} = \frac{\theta_{2}}{2}\frac{\theta_{3}}{3}\sigma_{a}^{2}, \qquad (2.4.2)$$

while all other autocovariances are zero. Thus the autocorrelation function is

$$\rho_{01} = \frac{-\theta_{1}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}}, \qquad \rho_{11} = \frac{-\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}}$$

$$\rho_{10} = \frac{\theta_{1}(\theta_{2} + \theta_{3})}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}}, \qquad \rho_{-11} = \frac{-\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}},$$

$$\rho_{20} = \frac{\theta_{2}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2}}.$$
(2.4.3)

From (1.11), the power spectrum is given by

$$p(g,f) = 2\sigma_{a}^{2} \left| 1 - \theta_{1} e^{-i2\pi f} - \theta_{2} e^{-i2\pi g} e^{-i2\pi f} - \theta_{3} e^{i2\pi g} e^{-i2\pi f} \right|^{2}, \qquad (2.4.4)$$

$$0 \le f \le \frac{1}{2}; \quad 0 \le g \le \frac{1}{2}.$$

For invertibility, $\Pi(B_x, B_t) = \theta^{-1}(B_x, B_t)$ must converge on $X = S_i$; since

 $\Theta(B_x,B_t)=1-(\theta_1+\theta_2B_x+\theta_3F_x)B_t$, we obtain

$$\begin{aligned} &|\theta_{1} + \theta_{2} + \theta_{3}| < 1, & |\theta_{1} + \theta_{2} - \theta_{3}| < 1, \\ &|\theta_{1} - \theta_{2} + \theta_{3}| < 1, & |\theta_{1} - \theta_{2} - \theta_{3}| < 1, \end{aligned}$$

or, equivalently, $|\theta_1| + |\theta_2| + |\theta_3| < 1$ as conditions on the parameters.

3. Two-Dimensional Time Series. In this section we consider MA models of two-dimensional time series with temporal and spatial orders not exceeding two. For convenience, we let $x=x_1$, $y=y_1$ and

denote by MA(r;p,q), where $p=(p_1,p_2)$, $q=(q_1,q_2)$, the MA process of temporal order r and spatial order p_1+q_1 in the x-direction and p_2+q_2 in the y-direction.

From (1.1) the general model has the form

$$\hat{z}_{x,y,t} = \sum_{n_2 = -\infty}^{\infty} \sum_{n_1 = -\infty}^{\infty} \sum_{k=1}^{\infty} \psi_{n_1,n_2,k} a_{x+n_1,y+n_2,t-k} a_{x,y,t}.$$
 (3.1)

The special case of (3.1) in which only a finite number of the coefficients are nonzero results in

$$\tilde{z}_{x,y,t} = \sum_{n_2 = -p_2}^{q_2} \sum_{n_1 = -p_1}^{q_1} \sum_{k=1}^{r} \psi_{n_1,n_2,k}^{a_{x+n_1,y+n_2,t-k}^{+a_{x,y,t}^{+}}} (3.2)$$

or in terms of shift operators,

$$\widetilde{z}_{x,y,t} = (1 + \sum_{n_2 = -p_2}^{q_2} \sum_{n_1 = -p_1}^{q_1} \sum_{k=1}^{r} \psi_{n_1,n_2,k} F_x^{n_1} F_y^{n_2} B_t^k) a_{x,y,t}$$

$$= \Psi(B_x, B_y, B_t) a_{x,y,t}.$$
(3.3)

In addition to the zero-dimensional model corresponding to p=q=0, and the ten one-dimensional models in each direction resulting by letting $p_1=q_1=0$ or $p_2=q_2=0$, there are fifty general "spatial" models described by (3.3) where $1 \le p_1 + q_1 \le 2$, i=1,2, and $1 \le r \le 2$. In what follows, we examine three such models.

3.1 The model MA(1;1,1,0,0). From (3.3) we obtain

$$\tilde{z}_{x,y,t} = (1 + \sum_{n_2=-1}^{0} \sum_{n_1=-1}^{0} \sum_{k=1}^{1} \psi_{n_1,n_2} k^F x^F y^D k^L a_{x,y,t} \qquad (3.1.1)$$

$$= a_{x,y,t} + \psi_{001} a_{x,y,t-1} + \psi_{-101} a_{x-1,y,t-1}$$

$$+ \psi_{0-11} a_{x,y-1,t-1} + \psi_{-1-11} a_{x-1,y-1,t-1}$$

$$= a_{x,y,t} - \theta_1 a_{x,y,t-1} - \theta_2 a_{x-1,y,t-1} - \theta_3 a_{x,y-1,t-1}$$

$$- \theta_3 a_{x-1,y-1,t-1}$$

$$= (1 - \theta_1 B_t - \theta_2 B_x B_t - \theta_3 B_y B_t - \theta_4 B_x B_y B_t) a_{x,y,t}$$

$$=\Theta(B_x, B_y, B_t)a_{x,y,t}$$

where $\psi_{001}=-\theta_1$, $\psi_{-101}=-\theta_2$, $\psi_{0-11}=-\theta_3$, and $\psi_{-1-11}=-\theta_4$. Substituting into the autocovariance generating function

$$\gamma(B_{x}, B_{y}, B_{t}) = \sigma_{a}^{2} (1 - \theta_{1}B_{t} - \theta_{2}B_{x}B_{t} - \theta_{3}B_{y}B_{t} - \theta_{4}B_{x}B_{y}B_{t}) \times (1 - \theta_{1}B_{t}^{-1} - \theta_{2}B_{t}^{-1} - \theta_{3}B_{y}^{-1}B_{t}^{-1} - \theta_{4}B_{x}^{-1}B_{y}^{-1}B_{t}^{-1})$$

and comparing with (1.9), we find the variance of the process is

$$\gamma_{000} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2 + \theta_3^2 + \theta_4^2) \sigma_a^2$$

and

$$\gamma_{001} = \theta_{1} \sigma_{a}^{2}, \quad \gamma_{100} = (\theta_{1} \theta_{2} + \theta_{3} \theta_{4}) \sigma_{a}^{2}, \\
\gamma_{101} = \theta_{2} \sigma_{a}^{2}, \quad \gamma_{010} = (\theta_{1} \theta_{3} + \theta_{2} \theta_{4}) \sigma_{a}^{2}$$

$$\gamma_{011} = \theta_{3} \sigma_{a}^{2}, \quad \gamma_{110} = \theta_{1} \theta_{4} \sigma_{a}^{2}$$

$$\gamma_{111} = \theta_{4} \sigma_{a}^{2}, \quad \gamma_{1-10} = \theta_{2} \theta_{3} \sigma_{a}^{2},$$
(3.1.2)

while all other autocovariances are zero. Thus the autocorrelation function is given by

$$\rho_{001} = \frac{-\theta_{1}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{100} = \frac{\theta_{1}\theta_{2} + \theta_{3}\theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}},$$

$$\rho_{101} = \frac{-\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{010} = \frac{\theta_{1}\theta_{3} + \theta_{2}\theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}},$$

$$\rho_{011} = \frac{-\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{110} = \frac{\theta_{1}\theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}},$$

$$\rho_{111} = \frac{-\theta_{4}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}, \quad \rho_{1-10} = \frac{\theta_{2}\theta_{3}}{1 + \theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2}}.$$

On substituting $B_x = e^{-i2\pi g_1}$, $B_y = e^{-i2\pi g_2}$, and $B_t = e^{-i2\pi f}$ into (1.11), we find the power spectrum of the process is given by $p(g,f) = 2\sigma_a^2 \left| 1 - (\theta_1 - \theta_2 e^{-i2\pi g_1} - \theta_3 e^{-i2\pi g_2} - \theta_4 e^{-i2\pi g_1} e^{-i2\pi g_2} \right) e^{-i2\pi f_1} \right|^2. \tag{3.1.4}$

For invertibility,

$$\begin{split} \| (\mathbf{B_{x}}, \mathbf{B_{y}}, \mathbf{B_{t}}) &= \mathbf{0}^{-1} (\mathbf{B_{x}}, \mathbf{B_{y}}, \mathbf{B_{t}}) \\ &= [1 - (\theta_{1} + \theta_{2} \mathbf{B_{x}} + \theta_{3} \mathbf{B_{y}} + \theta_{4} \mathbf{B_{x}} \mathbf{B_{y}}) \mathbf{B_{t}}]^{-1} \\ \\ \text{must converge on } \mathbf{X} \mathbf{S_{1}}. \quad \text{Hence, the parameters must satisfy} \\ & |\theta_{1} + \theta_{2} + \theta_{3} + \theta_{4}| < 1, \quad |\theta_{1} + \theta_{2} - \theta_{3} - \theta_{4}| < 1, \\ & |\theta_{1} - \theta_{2} - \theta_{3} + \theta_{4}| < 1, \quad |\theta_{1} - \theta_{2} + \theta_{3} - \theta_{4}| < 1, \end{split}$$

to ensure invertibility.

3.2 The model MA(1;1,1,1,1). From (3.3) we find

$$\widetilde{z}_{x,y,t} = (1 + \sum_{n_2=-1}^{1} \sum_{n_1=-1}^{1} \sum_{k=1}^{1} \psi_{n_1,n_2,k}^{n_1} \sum_{k=1}^{n_2} y_k^k) a_{x,y,t}$$

$$= a_{x,y,t} + \psi_{-1-11} a_{x-1,y-1,t-1} + \psi_{0-11} x_{x,y-1,t-1}$$

$$+ \psi_{1-11} x_{x+1,y-1,t-1} + \psi_{-101} x_{x-1,y,t-1}$$

$$+ \psi_{001} x_{x,y,t} + \psi_{101} x_{x+1,y,t-1} + \psi_{-111} x_{x-1,y+1,t-1}$$

$$+ \psi_{011} x_{x,y+1,t-1} + \psi_{111} x_{x+1,y+1,t-1}$$
(3.2.1)

Consider the special case where $\psi_{-1-11}^{=\psi}_{1-11}^{=\psi}_{1-11}^{=\psi}_{111}^{=\psi}_{111}^{=0}$. Letting $\psi_{001}^{=-\theta}_{1}$, $\psi_{-101}^{=-\theta}_{2}$, $\psi_{101}^{=-\theta}_{3}$, $\psi_{0-11}^{=-\theta}_{4}$ and $\psi_{011}^{=-\theta}_{5}$, we obtain

$$\widetilde{z}_{x,y,t}^{=a}_{x,y,t}^{-\theta}_{1}^{a}_{x,y,t-1}^{-\theta}_{2}^{a}_{x-1,y,t-1}^{-\theta}_{3}^{a}_{x+1,y,t-1}^{-\theta}_{3}^{a}_{x+1,y,t-1}^{-\theta}_{4}^{a}_{x,y-1,t-1}^{-\theta}_{5}^{a}_{x,y+1$$

Substituting into the autocovariance function

$$\gamma(B_{x}, B_{y}, B_{t}) = \sigma_{a}^{2} (1 - \theta_{1}B_{t} - \theta_{2}B_{x}B_{t} - \theta_{3}B_{x}^{-1}B_{t} - \theta_{4}B_{y}B_{t} - \theta_{5}B_{y}^{-1}B_{y}B_{t}) \times$$

$$(1 - \theta_{1}B_{t}^{-1} - \theta_{2}B_{x}^{-1}B_{t}^{-1} - \theta_{3}B_{x}B_{t}^{-1} - \theta_{4}B_{y}^{-1}B_{t}^{-1} - \theta_{5}B_{y}B_{t}^{-1})$$

and comparing with (1.9), we find the variance of the process is

$$\gamma_{000} = \sigma_z^2 = (1 + \theta_1^2 + \theta_2^2 + \theta_3^2 + \theta_4^2 + \theta_5^2) \sigma_a^2$$

and

$$\gamma_{001} = -\theta_{1} \sigma_{2}^{2} \quad \gamma_{100} = \theta_{1} (\theta_{2} + \theta_{3}) \sigma_{a}^{2}
\gamma_{101} = -\theta_{2} \sigma_{a}^{2} \quad \gamma_{010} = \theta_{1} (\theta_{4} + \theta_{5}) \sigma_{a}^{2}
\gamma_{-101} = -\theta_{3} \sigma_{a}^{2} \quad \gamma_{200} = \theta_{2} \theta_{3} \sigma_{a}^{2}
\gamma_{011} = -\theta_{4} \sigma_{a}^{2} \quad \gamma_{020} = \theta_{4} \theta_{5} \sigma_{a}^{2}
\gamma_{0-11} = -\theta_{5} \sigma_{a}^{2} \quad \gamma_{110} = (\theta_{2} \theta_{5} + \theta_{3} \theta_{4}) \sigma_{a}^{2}
\gamma_{1-10} = (\theta_{2} \theta_{4} + \theta_{3} \theta_{5}) \sigma_{a}^{2},$$

while all other autocovariances are zero. From these, we can obtain the autocorrelations.

From (1.11), the power spectrum is given by

$$p(g,f) = \left|1 - (\theta_1 + \theta_2 e^{-i2\pi g_1} + \theta_3 e^{i2\pi g_1} + \theta_4 e^{-i2\pi g_2} + \theta_5 e^{i2\pi g_2}) e^{-i2\pi f} \right|^2$$
(3.2.3)

For invertibility,

$$\Pi(B_{x}, B_{y}, B_{t}) = 0^{-1} (B_{x}, B_{y}, B_{t})
= [1 - (\theta_{1} + \theta_{2}B_{x} + \theta_{3}F_{x} + \theta_{4}B_{y} + \theta_{5}F_{y})B_{t}]^{-1}$$

must converge on $\begin{array}{c} 2 \\ X \\ i=-2 \end{array}$; hence we need

$$|\theta_{1} + \theta_{2}B_{x} + \theta_{3}F_{x} + \theta_{4}B_{y} + \theta_{5}F_{y}| < 1$$

and

$$|B_{x}| \le 1$$
, $|F_{x}| \le 1$, $|B_{y}| \le 1$, $|F_{y}| \le 1$.

Substituting in the values ± 1 for the (dummy) variables results in a system of inequalities that must be satisfied by the

parameters to ensure invertibility. Aroian finds the values of θ_i in terms of the essential correlations ρ_{001} , ρ_{10} , ρ_{20} , ρ_{01} , and ρ_{02} , and σ_a^2 .

3.3 The model MA(2;1,1,1,1). We consider only a special case of this model consisting of the model in section 3.2 except with a lag of two in time. We obtain

$${}^{z}_{x,y,t} = {}^{a}_{x,y,t} + {}^{\psi}_{0-11} {}^{a}_{x,y-1,t-1} + {}^{\psi}_{0-12} {}^{a}_{x,y-1,t-2}$$

$$+ {}^{\psi}_{-101} {}^{a}_{x-1,y,t-1} + {}^{\psi}_{-102} {}^{a}_{x-1,y,t-2} \qquad (3.3.1)$$

$$+ {}^{\psi}_{001} {}^{a}_{x,y,t-1} + {}^{\psi}_{002} {}^{a}_{x,y,t-2} + {}^{\psi}_{101} {}^{a}_{x+1,y,t-1}$$

$$+ {}^{\psi}_{102} {}^{a}_{x+1,y,t-2} + {}^{\psi}_{011} {}^{a}_{x,y+1,t-1} + {}^{\psi}_{012} {}^{a}_{x,y+1,t-2} + {}^{\psi}_{101} {}^{a}_{x$$

Letting $\psi_{001} = \theta_1$, $\psi_{-101} = \theta_2$, $\psi_{101} = \theta_3$, $\psi_{0-11} = \theta_4$, $\psi_{011} = \theta_5$, $\psi_{002} = \theta_6$, $\psi_{-102} = \theta_7$, $\psi_{102} = \theta_8$, $\psi_{0-12} = \theta_9$, $\psi_{012} = \theta_{10}$, we can rewrite (3.3.1) as

$$z_{x,y,t} = [1 - (\theta_1 + \theta_2 B_x + \theta_3 F_x + \theta_4 B_y + \theta_5 F_y) B_t - (\theta_6 + \theta_7 B_x + \theta_8 F_x + \theta_9 B_y + \theta_{10} F_y) B_t^2]_{a_{x,y,t}}$$

$$= \theta(B_x, B_y, B_t)_{a_{x,y,t}}.$$
(3.3.2)

Substituting into the autocovariance generating function we find the variance of the process is

$$\gamma_{000} = \sigma_z^2 = (1 + \sum_{i=1}^{10} \theta_i^2) \sigma_a^2$$

and

$$\begin{split} &\gamma_{001} = (-\theta_{1}^{1} + \theta_{1}^{1} \theta_{6}^{1} + \theta_{2}^{2} \theta_{7}^{2} + \theta_{3}^{2} \theta_{8}^{2} + \theta_{4}^{2} \theta_{9}^{2} + \theta_{5}^{2} \theta_{10}) \sigma_{a}^{2}, \\ &\gamma_{100} = (\theta_{1}^{1} \theta_{2}^{2} + \theta_{1}^{1} \theta_{3}^{2} + \theta_{6}^{2} \theta_{7}^{2} + \theta_{6}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \quad \gamma_{1-10} = (\theta_{2}^{1} \theta_{4}^{2} + \theta_{3}^{2} \theta_{5}^{2} + \theta_{7}^{2} \theta_{9}^{2} + \theta_{8}^{2} \theta_{10}) \sigma_{a}^{2}, \\ &\gamma_{010} = (\theta_{1}^{1} \theta_{4}^{2} + \theta_{1}^{2} \theta_{5}^{2} + \theta_{6}^{2} \theta_{9}^{2} + \theta_{6}^{2} \theta_{10}) \sigma_{a}^{2}, \quad \gamma_{111} = (\theta_{3}^{2} \theta_{9}^{2} + \theta_{5}^{2} \theta_{7}^{2}) \sigma_{a}^{2}, \\ &\gamma_{101} = (-\theta_{1}^{2} + \theta_{1}^{2} \theta_{7}^{2} + \theta_{3}^{2} \theta_{6}^{2}) \sigma_{a}^{2}, \quad \gamma_{1-11} = (\theta_{2}^{2} \theta_{9}^{2} + \theta_{5}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \\ &\gamma_{011} = (-\theta_{3}^{2} + \theta_{2}^{2} \theta_{6}^{2} + \theta_{1}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \quad \gamma_{1-11} = (\theta_{2}^{2} \theta_{10}^{2} + \theta_{4}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \\ &\gamma_{011} = (-\theta_{3}^{2} + \theta_{1}^{2} \theta_{9}^{2} + \theta_{5}^{2} \theta_{6}^{2}) \sigma_{a}^{2}, \quad \gamma_{1-11} = (\theta_{2}^{2} \theta_{10}^{2} + \theta_{4}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \\ &\gamma_{012} = (\theta_{9}^{2} \theta_{10}^{2}) \sigma_{a}^{2}, \quad \gamma_{012} = (\theta_{9}^{2} \theta_{10}^{2}) \sigma_{a}^{2}, \\ &\gamma_{020} = (\theta_{2}^{2} \theta_{3}^{2} + \theta_{7}^{2} \theta_{8}^{2}) \sigma_{a}^{2}, \quad \gamma_{102} = (\theta_{7}^{2} \theta_{8}^{2} + \theta_{3}^{2} \theta_{7}^{2}) \sigma_{a}^{2}, \\ &\gamma_{020} = (\theta_{4}^{2} \theta_{5}^{2} + \theta_{9}^{2} \theta_{10}^{2}) \sigma_{a}^{2}, \quad \gamma_{201} = (\theta_{2}^{2} \theta_{8}^{2} + \theta_{3}^{2} \theta_{7}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} = (\theta_{2}^{2} \theta_{5}^{2} + \theta_{3}^{2} \theta_{4}^{2} + \theta_{7}^{2} \theta_{10}^{2} + \theta_{8}^{2} \theta_{9}^{2}) \sigma_{a}^{2}, \\ &\gamma_{110} =$$

all other autocovariances being zero; from these we can determine the autocorrelations.

From (1.11) the power spectrum is given by

$$p(g,f) = 2\sigma_{a}^{2} \left| 1 - (\theta_{1} + \theta_{2}e^{-i2\pi g_{1}} + \theta_{3}e^{i2\pi g_{1}} + \theta_{4}e^{-i2\pi g_{2}} + \theta_{5}e^{i2\pi g_{2}}) e^{-2\pi f} - (\theta_{6} + \theta_{7}e^{-i2\pi g_{1}} + \theta_{8}e^{i2\pi g_{1}} + \theta_{9}e^{-i2\pi g_{2}} + \theta_{10}e^{i2\pi g_{2}}) e^{-4\pi f} \right|^{2}.$$

For invertibility, $\Pi(B_x, B_y, B_t) = \theta^{-1}(B_x, B_y, B_t)$ must converge on 2 $X S_1$. Alternatively, the roots of $\Theta(B_x, B_y, B_t)$ must be outside i=-2

$$X S_{i}$$
, and we find $i=-2$

Setting the variables equal to 'l leads to a system of inequalities in the ten parameters.

4. Conclusions. We have defined the properties of a general moving average model of m-dimensional time series. Specific one-dimensional and two-dimensional models have been investigated. Further work remains to be done on moving average models of n time series in m-dimensions.

ACKNOWLEDGMENTS

We appreciate the partial support of the Office of Naval Research, under contract ONR NO0014-77-C-0438 and the Faculty Research Fund of Union College and University. We appreciate the comments of Professors Peter Bloomfield of Princeton University and Larry Haugh of the University of Vermont. They brought the papers of Bennett (1975), and the review paper of Cliff and Ord (1975) to our attention. Bennett (1975) has generalized the Box-Jenkins time series to spatial analysis, m = 2; his methods generalize the m dimensions under proper restrictions. He also generalizes the results of Akaike (1973). Bennett's results are complementary to ours and apply to autoregressive models whether stationary or nonstationary.

BIBLIOGRAPHY

- Akaike, H. (1973). Markovian representation of stochastic processes by canonical variables. SIAM J. of Control, 11.
- Anderson, T.W. (1971). The Statistical Analysis of Time Series. New York: John Wiley & Sons, Inc.
- Aroian, L.A. (1977). Time Series in m-Dimensions: Definitions, Problems, and Prospects.
- Bennett, R.J. (1975). The representation and identification of spatio-temporal systems; an example of population diffusion in North-West England. Institute of British Geographers, Transactions, 66, 73-94.
- Box, G.E.P. and Jenkins, G.M. (1976). <u>Time Series Analysis:</u>
 <u>Forecasting and Control</u>, revised edition. San Francisco:
 Holden-Day, Inc.

- Campbell, D., Schaeffer, D.J., Aroian, L.A. (1977). Pollution in the Chicago Diversion Channel—An Example.
- Cliff, A.D., & Ord, J.K. (1975). Model Building and the analysis of spatial pattern in human geography. J. Royal Statist. Soc., Series B, 37, 297-328.
- Hannan, E.J. (1970). <u>Multiple Time Series</u>. New York: John Wiley & Sons, Inc.
- Jenkins, J.M., & Watts, D.J. (1968). Spectral Analysis and its Applications. San Francisco: Holden-Day, Inc.
- Makridakis, S.A. (1956). Survey of time series. <u>International</u> Statist. Rev., 44, 1, 29-70.
- Oprian, C., Taneja, V., Voss, D., & Aroian, L.A. (1977). General considerations and interrelationships between MA and AR models, time series in m dimensions, the ARMA model.

Unclassified

SEC	URITY	CLASSIFICATION OF	THIS PAGE	/When	Dete	Entered)		

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
1 AES-7802						
TITLE (and Subtitio)	- Andrews - Andr	S. TYPE OF REPORT & PERIOD COVERED				
Moving Average ModelsTim	e Series in	Technical Reports				
M-Dimensions.	A CONTRACTOR OF THE PARTY OF TH	6. PERFORMING ORG. REPORT NUMBER				
		AES-7802 6. CONTRACT OR GRANT NUMBER(*)				
D.A. Voss, C.A. Oprian	0	N00014-77-C-0438				
L.A. Aroian	(15)	N60014-77-C-0438				
9. PERFORMING ORGANIZATION NAME AND ADDRES		10. PROGRAM ELEMENT, PROJECT, TASK				
Institute of Administrati		AREA & WORK UNIT NUMBERS				
Union College and Univers ady, New York 12308	11 15 Jan 78					
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
Office of Naval Research Probability Program, Offi		Jan. 15, 1978				
Research, Arlington, VA		22 (12)27k				
14. MONITORING AGENCY NAME & ADDRESS(II diller		15. SECURITY CLASS. (et this report)				
		Unclassified				
		15a. DECLASSIFICATION/DOWNGRADING				
16. DISTRIBUTION STATEMENT (of this Report)		30113011				
Distribution Unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)						
TO DISTRIBUTION STATEMENT (or the second state of the second state						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) time series m dimensions						
moving average models, invertibility in conditions, stationarity, infinite autoregressive model, autocorrelation function, power						
spectra spectra						
\ /						
ABSTRACT (Continue on reverse elde il necessary a	nd Identify by block number)	Stochastic models for				
discrete time series in the time domain are well known but such						
models lack consideration of spatial dependency. We expand on						
their work by constructing spatially depending moving average models. Definitions of order, stationarity, invertibility,						
autocorrelation function, and spectrum are made as natural exten-						
sions of those in zero dimensions and are implemented in the one						
and two-space dimensional models.						

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Dote Selected)